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Abstract— the implementation focuses a systematic approach 
to the design the Spell Checker for OCR. In this a spelling 
correction system, is designed specifically for OCR-generated 
text, that selects candidate words through the information 
gathered from multiple knowledge sources and automatically 
replaces with the correct word. This system for text correction 
based on approximate string matching, which uses a statistical 
model that incorporates techniques like Confusion Matrix and 
N-gram Analysis. The ability to accurately recognize 
characters by scanning hard copy images is extremely 
important for many forms of automated data processing and 
has wide application. A great deal of effort has been devoted to 
correcting errors which invariably result from commercially 
available OCR devices. Besides error patterns like 
substitution, transposition, insertion and deletion, emphasis is 
given on modifiers and their positions with respect to the 
consonants and conjuncts being modified. The system is 
developed using file management system through java and 
java Swing for the Windows operating system. 

 
Keywords— Spell Checker, OCR, OCR-generated text, 
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I. INTRODUCTION 

Recent advances in printed document digitization and 
processing led to large scale digitization efforts of legacy 
printed documents producing document images. To enable 
subsequent processing and retrieval, the document images 
are often transformed to character-coded text using Optical 
Character Recognition (OCR). Although OCR is fast, OCR 
output typically contains errors.  The introduced errors 
adversely affect linguistic processing and retrieval of OCR 
documents. Depending on the application of the optically 
scanned text, large post processing effort can be necessary. 
Since OCR is often used to move large amounts of text to 
electronic form, the proofreading is a task both demanding 
and dull. This makes the need for good tools of spell 
checking and correction large and urgent. When a human 
being reads a document, he uses a wide spectrum of 
knowledge in making sense of what is written. On the other 
hand, a machine when presented with optically digitized 
text, in the absence of such knowledge, is prone to making 
mistakes in reading the text. The goal of OCR is to 
transform a document image into character-coded text. This 
usual process is to automatically segment a document 
image into character images in the proper reading order 
using image analysis heuristics, the applying an automatic 
classifier to determine the character codes that most likely 
correspond to each character image, and then exploit 
sequential context (e.g., preceding and following character 
and a list of possible words) to select the most likely 
character in each position. The character error rate can be 
influenced by reproduction quality (e.g., original documents 
are typically better than photocopies), the resolution at 
which a document was scanned, or noise either inherent in 

the document or introduced by the digitized process, any 
mismatch between the instances on which the character 
image classifier was trained and rendering of characters in 
the printed document. Due to the noise, the machine 
reading process may not be able to recognize a character 
(reject error) or may recognize a character incorrectly 
(substitution error). The noise some times also cause 
character fusions (i.e. two or more character images merge 
to appear as a single connected component) and or character 
fragmentation (i.e. a character image is fragmented into 
more than one sub image). The character fusion and 
fragmentation may lead to substitution and rejection errors 
besides making the word length shorter or longer than the 
actual length. One of the common ways of correcting these 
errors is to make tagged corpora of the language of the text 
to check if the OCR output word is valid word. A still 
higher level of knowledge such as grammar of the language 
of the text may also employed to check the output of the 
OCR. In this implementation, some of the issues concerning 
correction of optically read Oriya character strings using an 
Oriya tagged corpora is examined and a correction strategy 
with results of experimentation is suggested. Spell checker 
provide a ready mechanism for post processing the OCR 
output for corrections. A spell checker takes into account 
the process by which spelling errors usually get introduced 
while suggesting the corrections. A spell checker tries to 
model this process. A model is usually based on character 
phonetic  proximity, character key label proximity on the 
key board, character interchange, missing character, an 
extra character, character repetition etc. in another approach, 
one estimates the likelihood of a spelling by it’s frequency 
of occurrence that is derived from the transition 
probabilities between characters. This requires a priori 
statistical knowledge of the language [3]. One of the most 
common used models incorporating the OCR process is a 
statistical model that incorporates Confusion Matrix. The 
confusion matrix captures the substitution errors that OCR 
makes during the testing phase. The confusion matrix thus 
obtained is representative only when tested over a large 
sample space. It also depends upon the OCR methodology 
and feature vector space classification. This confusion 
matrix is used for hypothesizing the substitution errors and 
suggesting correction. The new hypothesized words have to 
be checked in the corpora. The correction process, while 
correcting the substitution errors, has to take the individual 
character confidence figures or probabilities into account. 
The character fusion and fragmentation pose further 
problems for the correcting process. The correction process 
needs an appropriate criterion to select the most likely 
candidate when more than one hypothesized words find 
match with the corpora. A trie-structure has been employed 
to obtain a set of next possible characters of the corpora 
while traversing the OCR output word character by 
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character. In another approach, a string matching technique 
is used to find the best match. It is reasonable to assume an 
accuracy of 70% or more at the OCR level. For a word 
length 3, on an average at least two character are correctly 
recognized. The rest of character may or may not be in error. 
The other approach, popularly used in the OCR problems, 
is the N-gram approach. Construction of appropriate N-
gram from raw text data is an important issue in this 
approach. The N-gram frequencies of the corrected text and 
the optically scanned text were compared and N-grams that 
showed large frequency differences between text versions 
were displayed to the editor, together with a concordance of 
all the occurrences of the N-gram. This allowed the editor 
to formulate a correction rule for the N-gram under 
consideration [1][2][3][4].        

A BRIEF OVERVIEW OF INDIAN LANGUAGES 

 The use a language for any application its characteristics 
are required to be known. Once this is known, the 
application can make use of languages in a most uniform 
manner. Indian scripts have a very different structure and 
have communality amongst them. They follow almost same 
rules; but the way of representing them is different. Indian 
Scripts have tremendous applications in day-to-day life. 
These applications include Word Processing, Database 
Management, machine Translation, OCR, etc. Once the 
characteristics of these scripts are known, making use of 
them for any of these scripts are known, making use of 
them for any of these application is possible. These are 15 
officially recognized Indian Scripts. These scripts are 
broadly divided into two categories namely Brahmi scripts 
and Perso-Arabic scripts consists of Devanagari, 
Gurumukhi, Gujarati, Oriya, Bengali, Assamese, Telugu, 
Kannada, Malayalam and Tamil. The Perso-Arabic scripts 
include Urdu, Sindhi and Kashmiri. Devanagari script is 
used by Hindi, Marathi and Sanskrit languages. The 
characteristics of the languages within the family are quite 
peculiar. They have a common phonetic structure, making 
the common character set. 
A.STRUCTURE OF INDIAN SCRIPTS 
Since the origin of all these scripts is same, they share a 
common phonetic structure. The alphabet may vary slightly 
and also the graphical shapes. Using these characteristics a 
transliteration facility between any Indian scripts is possible. 
Typically the alphabets get divided in to following 
categories: the Constants: all Indian scripts use 5 types of 
constants groups called varga. Some vowel like ‘a’ is 
included in the constant category. Each varga has 5 
consonants, with primary and secondary pairs. The second 
consonant in each pair is derived from the first consonant 
with ‘h’ sound and have separate graphical representation. 
Other consonants not present in this category are YA, RA, 
LA, VA, SA, HA and invisible consonants like, RA (halant) 
and (halant) RA, get formed differently. 
Vowels: all the vowels are represented by separate symbols. 
These vowels are placed on the consonants either in the 
beginning or after the consonant. Each of these vowels is 
pronounced separately. Typical vowels are: 
Vowel: A, I, Ee, u, U, ru, Ee 
Usage: Ka, Ki, Kee, Ku, KU, Kru, and Kee 
Vowel: e, E, a, o, O, au, ao 

Usage: Ke, KE, KA, Ko, KO, Kau, Kao 
Halant: while forming the conjuncts use of broken 
consonants is activated by halant. On mixing of two or 
more consonants the shape of the conjunct varies. Many a 
times halant is required to indicate the vowel-less ending. 
e.g. Ramnathan. 
Punctuations and Numerals: all the punctuations and 
numerals are common between English and Indian Scripts. 
OCR SYSTEM 
When the page of a text is scanned into a PC, it is stored as 
an electronic file made up of tiny dots, or pixels; it is not 
seen by computer as text, but rather as a “picture of text”. 
Word processors are not capable of editing bit map images. 
In order to turn the group of pixels into editable words, the 
image must go through a complex process known as 
Optical Character Recognition (OCR). OCR research began 
in the late 1950’s and since then, the technology has been 
continually developed and refined. In the 1970’s and early 
1980’s, OCR software was still very limited-it could only 
work with certain typefaces and sizes. These days, OCR 
software is far more intelligent, and can recognize 
practically all typefaces as well as severely degraded 
document images [3]. 
 One of the earliest OCR techniques was something called 
matrix or pattern matching. OCR programs, which use the 
pattern matching method, have bitmaps stored for every 
character of each of different front and type sizes. By 
comparing a database of stored bitmaps the program 
attempts to recognize the letters. 
Feature extraction was the next step in OCR’s development. 
This attempted to recognize characters identifying their 
universal features, the goal being to make OCR typeface-
independent. If all the character could be identified using 
rules defining the way that loops and lines join each other, 
then individually letters could be identified regardless of 
their typeface. For example: the letter “a” is made from a 
circle, a line on the right side and an arc over the middle. So, 
if a scanned letter had these “features” it would be correctly 
identified as the letter “a” by the OCR program. Feature 
extraction was a step forward from matrix matching, but 
actual results were badly affected by poor-quality print. 
Extra makes on the page, or stain in the paper, had a 
dramatic effect on accuracy. The elimination of such 
“noise” became a whole research area itself. Once noise can 
be identified, the reliable character fragments can then be 
reconstructed into the most likely letter shapes.   
A.DIFFERENT STAGES OF OCR SYSTEM 
Optical recognition devices are currently used to convert 
printed material into ASCII text for automated information 
retrieval.OCR system consists of four major stages: (1) Pre-
processing (2) Segmentation (3) Feature Extraction (3) 
Classification (4) Post-processing. 
APPROACHES TO ERROR CORRECTION FOR OCR 
The problem of detecting error in words and automatically 
correcting them is a great research challenge. It’s solution 
has enormous application potential in text and code editing, 
computer Aided Authoring, Optical Character 
Recognition(OCR), Machine Translation(MT), Natural 
Language Processing(NLP), Database Retrieval and 
Information Retrieval Interface, Speech Recognition, Text 
to  Speech and Speech to Text Conversion, Communication 
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System for the disabled (e.g. blind and deaf),  Computer 
Aided Tutoring and Language Learning, and Pen-Based 
Computer Interface.  The word error can belong to one of 
the two distinct categories, namely nonword error and real-
word error[3][4]. 
Let a string of character separated by spaces or punctuation 
marks be called a candidate string. A candidate string is 
valid word if it has meaning. Else, it is nonword. By real 
word error we mean a valid but not the intended word in the 
sentence, thus making the sentence syntactically or 
semantically ill-formed or in correct. In both cases the 
problem is to detect the erroneous word and either suggest 
correct alternatives or automatically replace it by the 
appropriate word. 
There are several issues to be addressed in the error 
correction problem. The first issue concerns the error 
patterns generated by different text generating media such 
as typewriter and computer keyboard, typesetting and 
machine printing, OCR system, speech recognizer output, 
and of course, handwriting. Usually, the error pattern of one 
media does not match with that of the other. The error 
pattern issue of each media concerns the relative abundance 
of insertion, deletion, substitution and transposition error, 
run-on and split word error, single versus multiple character 
error, word length effect, positional bias, character shape 
effect, phonetic similarity effect, heuristic tendencies etc. 
the  knowledge  about error pattern is necessary to model an 
efficient spellchecker. 
Another important issue is the tagged corpora which 
concerns the size of the corpora, the problem of inflection 
and creative morphology, word access techniques and so on. 
The other approach, popularly used in OCR problems, is 
the N-gram approach. Construction of appropriate N-gram 
from raw text data is an important issue in this approach. 
The detection of real word error needs higher level 
knowledge compared to the error detection of nonword 
error. In fact, detection of real word error is a problem that 
needs NLP tool to solve. Several approaches based on 
minimum edit distance; similarity key rules, N-grams, 
probability and neural nets are proposed to accomplish the 
task. Of these, minimum edit distance based approaches are 
the most popular ones. The minimum edit distance is the 
minimum number of editing operations (insertion, deletions 
and substitutions) required to transform one text string to 
another. The distance is also referred to as Damerau-
Levenshtein distance after the pioneers who proposed it for 
text error correction. In its original form, minimum edit 
distance algorithms require ‘m’ words. After comparisons, 
the words with minimum edit distance are chosen as correct 
alternatives. To improve the speed, a reverse minimum edit 
distance is used where a candidate set of words is produced 
by first generating every possible single error permutation 
of the misspelled string and then checking the corpora for 
any make up valid word. Spell checker are either stand-
alone applications capable of operating on a block of text, 
or as a feature of a larger application, such as a word 
processor, email client, electronic dictionary, or search 
engine[11][12]. 
Simple spell checker operate at the word level, by 
comparing each word level, by comparing each word in a 
given input against a vocabulary (often referred to as a 

dictionary). If the word is not found within the vocabulary, 
it is designated erroneous, and algorithms may be run to 
detect which word the user most likely meant to type. One 
simple such algorithm is listing words from the dictionary 
with a small Levenshtein distance from the typed word. 
As already outlined, a spell checker customarily consists of 
two parts: (1) A set of routines for scanning text and 
extracting words (2) A corpora against which the words 
found in the text are compared. 
 An interactive spell checker can also be helpful in 
correction. In the simplest case, the checkers remember all 
tokens which the user has indicated should be replaced and 
the words with which the tokens are to be replaced. After 
the first such replacement, future occurrences of the 
misspelled token can be automatically corrected. A similar 
approach is including common misspellings in the 
dictionary with the correct spelling. This approach has not 
been included in any current spell checkers, probably 
because of the lack of an obvious source of known 
misspellings and the low frequency of even common 
misspellings. 80% of all spelling errors are result of: 

 Transposition of two letters 
 One letter extra 
 One letter missing 
 One letter wrong 

The basic algorithm for correction is for each token which 
is not found in the corpora, construct a list of all words 
which could produce this token by one of the above rules. 
These are called candidate spellings. If the list has exactly 
one candidate, guess that word. If the list contains several 
words, then N-gram approach is applied. Transpositions can 
be detected by transposing each pair of adjacent characters 
in the token, one at a time, and searching for the resulting 
token. If the resulting token is found, it is a candidate and is 
added to the list. For a token of WL characters, this requires 
WL-1 searches of the dictionary. Checking for extra letter 
requires deleting each character one at a time, and searching 
for the resulting token. This requires additional WL 
searches. Most tokens are short so this need not be 
expensive. The remaining two types of errors (one missing 
letter and one wrong letter) are difficult to detect. A 
search with a match any character feature cannot stop when 
the first word match is found, but most continue, since 
many words may match the token. This requires WL+1 
searches for a missing letter and WL searches for a wrong 
letter error. 
For a wrong letter in the third or subsequent character, 
all words which are candidates must exist on the same chain 
that the suspect token hashes to. Hence, each entry on that 
chain is inspected to determine if the suspected differs from 
the entry by exactly one character. This is accomplished by 
an exclusive-or (XOR) between the suspect and the 
dictionary. Then a JFFO instruction selects the first nonzero 
byte in the XOR. This byte is zeroed and if the result is all 
zero, then the dictionary words differs from the suspect in 
only one letter. All such words are listed at CANDBF, 
where they can be inspected later. For a wrong letter in the 
first or second character, the program tries varying the 
second later through all 26 possible values, searching for an 
exact match. Then all 26 possible values of the first letter 
are tried, after setting the second letter to its original value. 
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This means that 52 more chains are searched for possible 
matches. To correct transposed letters, all combinations of 
transposed letters are tried. There is only WL-1 such 
combinations, so it is fairly cheap to do this. To correct one 
extra letter, WL copies of the token are made, each with 
some letter removed. Each of these is looked up in the 
dictionary. This takes WL searches. To correct one missing 
letter, WL+1 copies of the token are made, each time 
inserting a NULL character in a new position in the suspect. 
The NULL character is never part of any word, so the 
suspect token augmented by an embedded NULL can be 
thought of as a word with one wrong letter (the NULL). 
Then algorithm for matching one wrong letter is used. If  
the first character is omitted. Counting, we find that a total 
of 3*WL+103 chains must be searched, with WL such 
chain searches requiring a special algorithm to look for 
(exactly) one wrong character.   
The implementation describes a new automatic spelling 
correction approach to deal with OCR generated errors. The 
method used is based on three principles. 

 Approximate string matching between the 
misspellings and the term occurring in the corpora.  

 The use of confusion matrix, which contains 
information inherently specific to the nature of errors 
caused by the particular OCR device. 

 The other approach, popularity used in OCR 
problems, is the N-gram approach. Construction of 
appropriate N-gram from raw text data is an important issue 
in this approach. 
A .DETAILED DESCRIPTION OF THE PROCESS 
The system includes a document scanning device, which 
may comprise an optical scanner or a facsimile machine. 
Scanning device scans an input original document and 
generates an image signal that is representative of the 
characters appearing on document. After performing an 
OCR algorithm on the image signal, OCR module creates 
an electronic document that includes recognized words 
intended to correspond exactly, in spelling and in 
arrangement, to the words of the original document. 
Although the recognized words of the electronic document 
should match all the corresponding words of the original 
document, a complete match some times does not occur. 
Any incorrect words in the electronic document that is 
flagged by one of these algorithms as incorrect is referred to 
as a misrecognized word. The spell checking algorithm is 
capable of generating at least one alternative word for each 
incorrect word. These alternative words are referred to as 
reference words, in the next step is to select the reference 
word that is most likely the correct word for replacing the 
identified incorrect word. This selection is accomplished by 
calculating a replacement word value for each reference 
word. The next step replaces incorrect word with reference 
word that has been assigned the highest replacement word 
value [3][4]. 

CONFUSION MATRIX 

In the field of artificial intelligence a confusion matrix is a 
visualization tool typically used in supervised learning (in 
unsupervised learning it is typically called a matching 
matrix). 

Each column of the matrix represents the instances in a 
predicted class, while each row represents the instances in 
an actual class. One benefit of confusion matrix is that it is 
easy to see if the system is confusing two classes (i.e. 
commonly mislabelling one as another) [5]. 
When the data set is unbalanced (when the number of 
samples in different classes vary greatly) the error rate of a 
classifier is not representative of the true performance of the 
classifier. This can easily be understood by an example. If 
there are for example 990 samples from class 1 and only 10 
samples from class 2, the classifier can easily be biased 
towards class 1. If the classifier classifies all the samples as 
class 1, the accuracy will be 99%. This is not a good 
indication of the classifier’s true performance. The 
classifier had a 100% recognition rate for class 1 but a 0% 
recognition rate for class 2. 

N-GRAM APPROACH  

N-grams are sequences of characters or words extracted 
from a text or an N-gram is a sub-sequence of n items from 
a given sequence. N-gram are used in various areas of 
statistical natural language processing and genetic sequence 
analysis. The items in question can be letters, words or base 
pairs according to the application.  An N-gram of size 1 is a 
“unigram”; size 2 is a “bigram”(or, more etymologically 
sound but less commonly used , a “digram”); size 3 is a 
“trigram”; and size 4 or more is simply called an “N-gram”. 
Some language models built from N-gram are “(n-1)-order 
Markov models”. 
N-grams can be divided in two categories: (1) character 
based and (2) word based. A character N-gram is a set of n 
consecutive characters extracted from a word. The main 
motivation behind this approach is that similar words will 
have a higher proportion behind this approach is that 
similar words will have a high proportion of N-grams in 
common. Typical values for n are 2 or 3; these correspond 
to the use of bigrams or trigrams, respectively. There are 
n+1 such bigrams and n+2 such trigram in a word 
containing n characters. Character based N-gram are 
generally used in measuring the similarity of character 
strings. Spell checker, stemming, OCR error correction are 
some of the applications which use character based N-
grams. Word N-grams are sequences of n consecutive 
words extracted from text. Word level N-gram models are 
quite robust for modelling language statistically as well as 
for information retrieval without much dependency on 
language[4][5][6]. 

N-GRAM BASED LANGUAGE MODELLING 

Informally speaking, a language is modelled by making use 
of linguistic and common sense knowledge about language. 
Formally, a language model is a probability distribution 
over word sequences or word N-gram. Specifically, a 
language model (LM) estimates the probability of the next 
word given preceding words. A word N-gram language 
model uses the history of n-1 immediately preceding words 
to compute the occurrence probability P of the current word. 
The value of N is usually limited to 2 (bigram model) or 3 
(trigram model). If the vocabulary size is M words, then to 
provide complete coverage of all possible N word 
sequences the language model needs to consist of MN-
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grams (i.e. sequence of N words). This is probability 
expensive (e.g. a bigram language model for a 40,000 
words vocabulary will require 1.6 x 109 bigram pairs), and 
many such sequences have negligible probabilities. 
Obviously, it is not possible word pairs. Typically, an N-
gram LM lists only the most frequently occurring word 
pairs, and uses backoff mechanism to compute the 
probability when desired word pair is not found.  
When used for language modelling independence 
assumptions are made so that each word depends only on 
the last n words. The Markov model is used as an 
approximation of the true underlying language. This 
assumption is important because it massively simplifies the 
problem of learning the language model from data. In 
addition, because of the open nature of the language, it is 
common to group words unknown to the language model 
together [3][4]. 
N-gram models are widely used in statistical natural 
language processing. In speech recognition, phonemes and 
sequences of phonemes are modeled using a N-gram 
distribution. For parsing, words are modeled such that each 
N-gram is composed of n words. For language recognition, 
sequences of letters are modeled for different languages. 
For a sequence of words, (for example “the dog smelled 
like a skunk”), the trigrams would be: “the dog smelled”, 
“dog smelled like”, “smelled like a”, and “like a skunk”. 
For sequences of character, the 3-grams(sometimes referred 
to as “trigram”) that can be generated from “good morning” 
are “goo”, “ood”, “od ”, “d m”, “ mo”, “mor” and so forth. 
Some practitioner’s pre-process strings to remove spaces, 
most simply collapse whitespace to a single space while 
preserving paragraph marks. Punctuation is also commonly 
reduced or removed by pre-processing. N-grams can also be 
used for sequences of words or, in fact, for almost any type 
of data. N-gram models are often criticized because they 
lack any explicit dependency range is (n-1) tokens for an  
N-gram model, it is also true that the effective range of 
dependency is significantly longer than this although long 
range correlations drop exponentially with distance for any 
Markov model[9][10]. 
The hypothesis is that differences in observed frequency 
between correct text and optically scanned text for a 
character N-gram would indicate that the N-gram in the 
question was incorrectly recognized by the scanning 
process. The N-gram frequencies of the corrected text and 
the optically scanned text were compared and N-grams that 
showed large frequency differences between text versions 
were displayed to the editor, together with a concordance of 
all the occurrences of the N-gram. This allowed the editor 
to formulate a correction rule for the N-gram under 
consideration. Two sets of rules were formulated, one with 
rules that replaced a character trigram with another string of 
optional length, the other with rules that replaced a string of 
optional length with another. The rules that rewrite trigrams 
were generated with the support of a graphical tool that 
generated a list of suspect trigrams, for each trigram 
showed a concordance of all the occurrences of the trigram, 
and with a correction given by the user, could generate a 
correction rule. The rules were then used to correct both  
the article that has been used to generate the rules and the 
other to see if the rules were useful in another context than 

the one they had been generated in. the number of errors 
generated in the correction process were counted separately 
to keep track of  over correction[12]. 
 

N-GRAMS FOR APPROXIMATE MATCHING 

N-grams can also be used for efficient approximate 
matching. By converting a sequence of items to a set of N-
grams, it can be embedded in a vector space (in other words, 
represented as a histogram), thus allowing the sequence to 
be compared to other sequences in an efficient manner. For 
example, if we convert string with only letters in the 
English alphabet into 3-grams, we get a 263 – dimensional 
space(the first dimension measures the number of 
occurrences of “aaa”, the second “aab”, and so forth for all 
possible combinations of three letters). Using this 
representation, we lose information about the string. For 
example, both the string “abcba” and “bcbab” give rise to 
exactly the same 2-grams. However, we know empirically 
that if two strings of real text have a similar vector 
representation (as measured by cosine distance) then they 
are likely to be similar. Other metrics have also been 
applied to vectors of N-grams with varying, and sometimes 
better results [5][6]. 
 

N-GRAM APPLICATIONS 

N-gram finds use in several areas of computer science, 
computational linguistics, and applied mathematics. 
They have been used to: 

 Design kernel allows machine learning algorithms such 
as support vector machines to learn from string data. 

 Find like candidates for the correct spelling of a 
misspelled word. 

 Improve compression in compression algorithms were 
a small area of data requires N-grams of greater length. 

 Assess the probability of a given word sequence 
appearing in text of a language of interest in pattern 
recognition systems, speech recognition, OCR (optical 
character recognition), intelligent character 
recognition(ICR), machine translation and similar 
applications. 

 Improve retrieval in formation retrieval system when it 
is hoped to find similar “document” (a term for which 
the conventional meaning is sometimes stretched, 
depending on the data set) given a single query 
document and a database of reference documents. 

 Improve retrieval performance in genetic sequence 
analysis as in the BLAST family of programs. 

 Identify the language a text is in or the species a small 
sequence of DNA was taken from. 

 Predict letters or words at random in order to create 
text, as in the dissociated press algorithm. 

 

.DETECTING MISSSPELLED WORDS IN ORIYA 

CORPORA USING SYLLABLE N-GRAM 

FREQUENCIES 

Here, a system is designed and implemented which decides 
whether or not a word is misspelled in Oriya Corpora. 
Firstly, a database of syllable, bigram and trigram 
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frequencies is constructed using the syllables that are 
derived from different Oriya corpora. Then, the system 
takes words in Oriya text as an input and computes the 
probability distribution of words using syllable, bigram and 
trigram frequencies from the database. If the probability 
distribution of a word is zero, it is decided that this word is 
misspelled. For testing the system, two text databases are 
constructed with the same words. One text database has 685 
misspelled words. The other has 685 correctly spelled 
words. The words from these text databases are taken as 
input for the system. The system produces two results for 
each word: “Correctly spelled word” or “Misspelled word”. 
The system that is designed with monogram and bigram 
frequencies has 86% success rate for the misspelled words 
and has 88% success rate for the correctly spelled words. 
According to the system designed with bigram and trigram 
frequencies, there is 97% success rate for the misspelled 
words and there is 98% success rate for the correctly 
spelled words[6][7][8][9]. 
 
In automatic spelling correction, the probability of the 
sequence of characters Y produced by a possibly imperfect 
typist given the hypothesized word series W is estimated by 
using a mistyping model for the word series W.   
 
In these types of applications, the probability of the word 
series W can be modelled according to the equation:  
P (W1

k) = P (W1) P (W2|W1)…………..P (Wk|W1
k-1) (2) 

Where W1
k represents a series of words W1, W2... Wk. 

 
In the conditional probability P (Wk|W1

k-1) the term W1
k-1 

is called the history or the predictor feature and represents 
the initial (k-1) words of the series. Each word in the 
history is a predictor word. The term Wk is called the 
predicted feature or the category feature [12]. 
 
The mechanism for estimating the conditional probabilities 
in Equation (2) is a language model. A language model 
estimates the conditional probabilities from limited training 
text (training data). The larger the training text, and the 
larger the number of parameters in the language model, the 
more accurate and precise are the predictions from the 
language model [11][12]. 
 
As stated above, a purpose of language model is to assign 
probabilities to a word series, e.g., the probability of a 
trigram W1 W2 W3; given that bigram W1 W2 has just 
occurred. 
 
Recently the successful model is the trigram model. The 
model is based upon deleted interpolation. This model 
requires the storage of records that identify: (a) a trigram id 
W1 W2 W3 and its count C (W1 W2 W3); (b) a bigram 
identification W2 W3 and its count C (W2 W3); and(c) a 
unigram identification W3 and its count C (W3). The count 
of a given trigram is the number of occurrences of this 
given trigram in the training data.  
  

 
(1) Misspelled Oriya Text(Output of OCR)  

 

 
       (2)Displaying the Suggestion list of Misspelled words 

 
  
 

 
  

 
                  (3)Frequency Calculation of Bigrams 
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                               (4)Frequency Calculation of Bigrams 

                         
                              (5) Correction phase under Execution head 
 

 
                            (6) Output after Correction Phase  

 
CONCLUSIONS 

Research into algorithmic techniques for detecting and 
correcting spelling errors in text has a long, robust history 
in computer science. As an amalgamation of the traditional 
fields of the Artificial intelligence, pattern 
Recognition ,String Matching, Computational Linguistics, 
and others, this fundamental problem in information science 
has been studied from the early 1960’s to the present. As 
other technologies matured, this area of research has 
become more important than ever. This statistical and 
language independent nature of N-gram model seems 
suitable for dealing with a multilingual collection of texts. 
Improving retrieval efficiency from Indian language 
document by N-gram will be my future effort. The use of 
N-gram language modeling for information retrieval, text 

categorization and Machine Translation has to be 
investigated. 
The development of valuable system “Spellchecker for 
OCR” was of unique experience. In course of carrying out 
the project work, I found myself in growing field of 
software development area. There is always a room for 
improvement in any S/W package however efficient it may 
be. But the most important things are that the system should 
be flexible enough for future modification.  
 
The system “Spellchecker for OCR” has been designed in 
such a manner that modifications may be incorporated 
without affecting the behavior and working of any modules. 
Work can also be extended to context dependent error 
correction research that requires information from the 
surrounding context for detection and correction. The 
preference is given to the mappings that are known OCR 
confusions. The evaluation results cover a variety of 
corpora and shows that post correction improves the quality 
even for scanned texts with a very small number of OCR 
errors. There are two important points to be considered in 
future work. First the influence of the sentence context 
ranking to the correction result should be studied in more 
depth. It is desirable to complete a series of experiments in 
order to clarify the dependence on the domain and language 
used and how much improvements it yields. The second 
point is the further exploration of the correction based on 
the output of two different OCR engines. Further 
development and evaluation of this technique would be 
very valuable for the whole OCR field.  
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